Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Sci Rep ; 13(1): 7296, 2023 05 05.
Article in English | MEDLINE | ID: covidwho-2319042

ABSTRACT

The majority of SARS-CoV-2 transmissions originates from either asymptomatic or presymptomatic individuals. To prevent unnoticed introduction of SARS-CoV-2, many hospitals have implemented universal admission screening during the COVID-19 pandemic. The present study aimed to investigate associations between results of an universal SARS-CoV-2 admission screening and public SARS-CoV-2 incidence. Over a study period of 44 weeks, all patients admitted to a large tertiary care hospital were tested for SARS-CoV-2 by polymerase chain reaction. SARS-CoV-2 positive patients were retrospectively categorized as symptomatic or asymptomatic at admission. Cantonal data were used to calculate weekly incidence rates per 100,000 inhabitants. We used regression models for count data to assess the association of the weekly cantonal incidence rate and the proportion of positive SARS-CoV-2 tests in the canton with (a) the proportion of SARS-CoV-2 positive individuals and (b) the proportion of asymptomatic SARS-CoV-2 infected individuals identified in universal admission screening, respectively. In a 44-week period, a total of 21,508 admission screenings were performed. SARS-CoV-2 PCR was positive in 643 (3.0%) individuals. In 97 (15.0%) individuals, the positive PCR reflected residual viral replication after recent COVID-19, 469 (72.9%) individuals had COVID-19 symptoms and 77 (12.0%) SARS-CoV-2 positive individuals were asymptomatic. Cantonal incidence correlated with the proportion of SARS-CoV-2 positive individuals [rate ratio (RR): 2.03 per 100 point increase of weekly incidence rate, 95%CI 1.92-2.14] and the proportion of asymptomatic SARS-CoV-2 positive individuals (RR: 2.40 per 100 point increase of weekly incidence rate, 95%CI 2.03-2.82). The highest correlation between dynamics in cantonal incidence and results of admission screening was observed at a lag time of one week. Similarly, the proportion of positive SARS-CoV-2 tests in the canton of Zurich correlated with the proportion of SARS-CoV-2 positive individuals (RR: 2.86 per log increase in the proportion of positive SARS-CoV-2 tests in the canton, 95%CI 2.56-3.19) and the proportion of asymptomatic SARS-CoV-2 positive individuals (RR: 6.50 per log increase in the proportion of positive SARS-CoV-2 tests in the canton, 95%CI 3.93-10.75) in admission screening. Around 0.36% of admission screenings were positive in asymptomatic patients. Admission screening results paralleled changes in population incidence with a brief lag.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Incidence , Retrospective Studies , Pandemics
2.
Swiss Med Wkly ; 151: w20475, 2021 02 15.
Article in English | MEDLINE | ID: covidwho-2249422

ABSTRACT

BACKGROUND: SARS-CoV-2/COVID-19, which emerged in China in late 2019, rapidly spread across the world with several million victims in 213 countries. Switzerland was severely hit by the virus, with 43,000 confirmed cases as of 1 September 2020. AIM: In cooperation with the Federal Office of Public Health, we set up a surveillance database in February 2020 to monitor hospitalised patients with COVID-19, in addition to their mandatory reporting system. METHODS: Patients hospitalised for more than 24 hours with a positive polymerase chain-reaction test, from 20 Swiss hospitals, are included. Data were collected in a customised case report form based on World Health Organisation recommendations and adapted to local needs. Nosocomial infections were defined as infections for which the onset of symptoms was more than 5 days after the patient’s admission date. RESULTS: As of 1 September 2020, 3645 patients were included. Most patients were male (2168, 59.5%), and aged between 50 and 89 years (2778, 76.2%), with a median age of 68 (interquartile range 54–79). Community infections dominated with 3249 (89.0%) reports. Comorbidities were frequently reported, with hypertension (1481, 61.7%), cardiovascular diseases (948, 39.5%) and diabetes (660, 27.5%) being the most frequent in adults; respiratory diseases and asthma (4, 21.1%), haematological and oncological diseases (3, 15.8%) were the most frequent in children. Complications occurred in 2679 (73.4%) episodes, mostly respiratory diseases (2470, 93.2% in adults; 16, 55.2% in children), and renal (681, 25.7%) and cardiac (631, 23.8%) complications for adults. The second and third most frequent complications in children affected the digestive system and the liver (7, 24.1%). A targeted treatment was given in 1299 (35.6%) episodes, mostly with hydroxychloroquine (989, 76.1%). Intensive care units stays were reported in 578 (15.8%) episodes. A total of 527 (14.5%) deaths were registered, all among adults. CONCLUSION: The surveillance system has been successfully initiated and provides a robust set of data for Switzerland by including about 80% (compared with official statistics) of SARS-CoV-2/COVID-19 hospitalised patients, with similar age and comorbidity distributions. It adds detailed information on the epidemiology, risk factors and clinical course of these cases and, therefore, is a valuable addition to the existing mandatory reporting.


Subject(s)
COVID-19/epidemiology , Hospitalization/statistics & numerical data , Population Surveillance , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/complications , Child , Child, Preschool , Comorbidity , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Switzerland/epidemiology , Young Adult
3.
JAMA Netw Open ; 6(2): e2255599, 2023 02 01.
Article in English | MEDLINE | ID: covidwho-2244315

ABSTRACT

Importance: With the ongoing COVID-19 pandemic, it is crucial to assess the current burden of disease of community-acquired SARS-CoV-2 Omicron variant in hospitalized patients to tailor appropriate public health policies. Comparisons with better-known seasonal influenza infections may facilitate such decisions. Objective: To compare the in-hospital outcomes of patients hospitalized with the SARS-CoV-2 Omicron variant with patients with influenza. Design, Setting, and Participants: This cohort study was based on a national COVID-19 and influenza registry. Hospitalized patients aged 18 years and older with community-acquired SARS-CoV-2 Omicron variant infection who were admitted between January 15 and March 15, 2022 (when B.1.1.529 Omicron predominance was >95%), and hospitalized patients with influenza A or B infection from January 1, 2018, to March 15, 2022, where included. Patients without a study outcome by August 30, 2022, were censored. The study was conducted at 15 hospitals in Switzerland. Exposures: Community-acquired SARS-CoV-2 Omicron variant vs community-acquired seasonal influenza A or B. Main Outcomes and Measures: Primary and secondary outcomes were defined as in-hospital mortality and admission to the intensive care unit (ICU) for patients with the SARS-CoV-2 Omicron variant or influenza. Cox regression (cause-specific and Fine-Gray subdistribution hazard models) was used to account for time-dependency and competing events, with inverse probability weighting to adjust for confounders with right-censoring at day 30. Results: Of 5212 patients included from 15 hospitals, 3066 (58.8%) had SARS-CoV-2 Omicron variant infection in 14 centers and 2146 patients (41.2%) had influenza A or B in 14 centers. Of patients with the SARS-CoV-2 Omicron variant, 1485 (48.4%) were female, while 1113 patients with influenza (51.9%) were female (P = .02). Patients with the SARS-CoV-2 Omicron variant were younger (median [IQR] age, 71 [53-82] years) than those with influenza (median [IQR] age, 74 [59-83] years; P < .001). Overall, 214 patients with the SARS-CoV-2 Omicron variant (7.0%) died during hospitalization vs 95 patients with influenza (4.4%; P < .001). The final adjusted subdistribution hazard ratio (sdHR) for in-hospital death for SARS-CoV-2 Omicron variant vs influenza was 1.54 (95% CI, 1.18-2.01; P = .002). Overall, 250 patients with the SARS-CoV-2 Omicron variant (8.6%) vs 169 patients with influenza (8.3%) were admitted to the ICU (P = .79). After adjustment, the SARS-CoV-2 Omicron variant was not significantly associated with increased ICU admission vs influenza (sdHR, 1.08; 95% CI, 0.88-1.32; P = .50). Conclusions and Relevance: The data from this prospective, multicenter cohort study suggest a significantly increased risk of in-hospital mortality for patients with the SARS-CoV-2 Omicron variant vs those with influenza, while ICU admission rates were similar.


Subject(s)
COVID-19 , Community-Acquired Infections , Influenza, Human , Humans , Female , Aged , Male , Cohort Studies , Hospital Mortality , Influenza, Human/epidemiology , Pandemics , Prospective Studies , SARS-CoV-2 , Switzerland/epidemiology , COVID-19/epidemiology , Hospitals , Community-Acquired Infections/epidemiology
4.
Emerg Infect Dis ; 28(10): 2087-2090, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2022573

ABSTRACT

Of 1,118 patients with COVID-19 at a university hospital in Switzerland during October 2020-June 2021, we found 83 (7.4%) had probable or definite healthcare-associated COVID-19. After in-hospital exposure, we estimated secondary attack rate at 23.3%. Transmission was associated with longer contact times and with lower cycle threshold values among index patients.


Subject(s)
COVID-19 , Cross Infection , COVID-19/epidemiology , Cross Infection/epidemiology , Humans , Incidence , SARS-CoV-2 , Switzerland/epidemiology , Tertiary Care Centers
5.
Swiss Med Wkly ; 151: w30105, 2021 11 22.
Article in English | MEDLINE | ID: covidwho-1689912

ABSTRACT

BACKGROUND: When the periods of time during and after the first wave of the ongoing SARS-CoV-2/COVID-19 pandemic in Europe are compared, the associated COVID-19 mortality seems to have decreased substantially. Various factors could explain this trend, including changes in demographic characteristics of infected persons and the improvement of case management. To date, no study has been performed to investigate the evolution of COVID-19 in-hospital mortality in Switzerland, while also accounting for risk factors. METHODS: We investigated the trends in COVID-19-related mortality (in-hospital and in-intermediate/intensive-care) over time in Switzerland, from February 2020 to June 2021, comparing in particular the first and the second wave. We used data from the COVID-19 Hospital-based Surveillance (CH-SUR) database. We performed survival analyses adjusting for well-known risk factors of COVID-19 mortality (age, sex and comorbidities) and accounting for competing risk. RESULTS: Our analysis included 16,984 patients recorded in CH-SUR, with 2201 reported deaths due to COVID-19 (13.0%). We found that overall in-hospital mortality was lower during the second wave of COVID-19 than in the first wave (hazard ratio [HR] 0.70, 95% confidence interval [CI] 0.63- 0.78; p <0.001), a decrease apparently not explained by changes in demographic characteristics of patients. In contrast, mortality in intermediate and intensive care significantly increased in the second wave compared with the first wave (HR 1.25, 95% CI 1.05-1.49; p = 0.029), with significant changes in the course of hospitalisation between the first and the second wave. CONCLUSION: We found that, in Switzerland, COVID-19 mortality decreased among hospitalised persons, whereas it increased among patients admitted to intermediate or intensive care, when comparing the second wave to the first wave. We put our findings in perspective with changes over time in case management, treatment strategy, hospital burden and non-pharmaceutical interventions. Further analyses of the potential effect of virus variants and of vaccination on mortality would be crucial to have a complete overview of COVID-19 mortality trends throughout the different phases of the pandemic.


Subject(s)
COVID-19 , Hospital Mortality , Hospitals , Humans , Pandemics , SARS-CoV-2 , Switzerland/epidemiology
6.
Euro Surveill ; 27(1)2022 01.
Article in English | MEDLINE | ID: covidwho-1613508

ABSTRACT

BackgroundSince the onset of the COVID-19 pandemic, the disease has frequently been compared with seasonal influenza, but this comparison is based on little empirical data.AimThis study compares in-hospital outcomes for patients with community-acquired COVID-19 and patients with community-acquired influenza in Switzerland.MethodsThis retrospective multi-centre cohort study includes patients > 18 years admitted for COVID-19 or influenza A/B infection determined by RT-PCR. Primary and secondary outcomes were in-hospital mortality and intensive care unit (ICU) admission for patients with COVID-19 or influenza. We used Cox regression (cause-specific and Fine-Gray subdistribution hazard models) to account for time-dependency and competing events with inverse probability weighting to adjust for confounders.ResultsIn 2020, 2,843 patients with COVID-19 from 14 centres were included. Between 2018 and 2020, 1,381 patients with influenza from seven centres were included; 1,722 (61%) of the patients with COVID-19 and 666 (48%) of the patients with influenza were male (p < 0.001). The patients with COVID-19 were younger (median 67 years; interquartile range (IQR): 54-78) than the patients with influenza (median 74 years; IQR: 61-84) (p < 0.001). A larger percentage of patients with COVID-19 (12.8%) than patients with influenza (4.4%) died in hospital (p < 0.001). The final adjusted subdistribution hazard ratio for mortality was 3.01 (95% CI: 2.22-4.09; p < 0.001) for COVID-19 compared with influenza and 2.44 (95% CI: 2.00-3.00, p < 0.001) for ICU admission.ConclusionCommunity-acquired COVID-19 was associated with worse outcomes compared with community-acquired influenza, as the hazards of ICU admission and in-hospital death were about two-fold to three-fold higher.


Subject(s)
COVID-19 , Influenza, Human , Cohort Studies , Hospital Mortality , Hospitalization , Hospitals , Humans , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Intensive Care Units , Male , Pandemics , Retrospective Studies , SARS-CoV-2 , Switzerland/epidemiology
7.
Microorganisms ; 9(8)2021 Aug 10.
Article in English | MEDLINE | ID: covidwho-1348674

ABSTRACT

Early identification and isolation of SARS-CoV-2-infected individuals is central to contain the COVID-19 pandemic. Nasopharyngeal swabs (NPS) serve as a specimen for detection by RT-PCR and rapid antigen screening tests. Saliva has been confirmed as a reliable alternative specimen for RT-PCR and has been shown to be valuable for diagnosing children and in repetitive mass testing due to its non-invasive collection. Combining the advantages of saliva with those of antigen tests would be highly attractive to further increase test capacities. Here, we evaluated the performance of the Elecsys SARS-CoV-2 Antigen assay (Roche) in RT-PCR-positive paired NPS and saliva samples (N = 87) and unpaired NPS (N = 100) with confirmed SARS-CoV-2 infection (Roche cobas SARS-CoV-2 IVD test). We observed a high positive percent agreement (PPA) of the antigen assay with RT-PCR in NPS, reaching 87.2% across the entire cohort, whereas the overall PPA for saliva was insufficient (40.2%). At Ct values ≤ 28, PPA were 100% and 91.2% for NPS and saliva, respectively. At lower viral loads, the sensitivity loss of the antigen assay in saliva was striking. At Ct values ≤ 35, the PPA for NPS remained satisfactory (91.5%), whereas the PPA for saliva dropped to 46.6%. In conclusion, saliva cannot be recommended as a reliable alternative to NPS for testing with the Elecsys Anti-SARS-CoV-2 Antigen assay. As saliva is successfully used broadly in combination with RT-PCR testing, it is critical to create awareness that suitability for RT-PCR cannot be translated to implementation in antigen assays without thorough evaluation of each individual test system.

8.
Swiss Med Wkly ; 151: w20547, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1332302

ABSTRACT

BACKGROUND: As clinical signs of COVID-19 differ widely among individuals, from mild to severe, the definition of risk groups has important consequences for recommendations to the public, control measures and patient management, and needs to be reviewed regularly. AIM: The aim of this study was to explore risk factors for in-hospital mortality and intensive care unit (ICU) admission for hospitalised COVID-19 patients during the first epidemic wave in Switzerland, as an example of a country that coped well during the first wave of the pandemic. METHODS: This study included all (n = 3590) adult polymerase chain reaction (PCR)-confirmed hospitalised patients in 17 hospitals from the hospital-based surveillance of COVID-19 (CH-Sur) by 1 September 2020. We calculated univariable and multivariable (adjusted) (1) proportional hazards (Fine and Gray) survival regression models and (2) logistic regression models for in-hospital mortality and admission to ICU, to evaluate the most common comorbidities as potential risk factors. RESULTS AND DISCUSSION: We found that old age was the strongest factor for in-hospital mortality after having adjusted for gender and the considered comorbidities (hazard ratio [HR] 2.46, 95% confidence interval [CI] 2.33−2.59 and HR 5.6 95% CI 5.23−6 for ages 65 and 80 years, respectively). In addition, male gender remained an important risk factor in the multivariable models (HR 1.47, 95% CI 1.41−1.53). Of all comorbidities, renal disease, oncological pathologies, chronic respiratory disease, cardiovascular disease (but not hypertension) and dementia were also risk factors for in-hospital mortality. With respect to ICU admission risk, the pattern was different, as patients with higher chances of survival might have been admitted more often to ICU. Male gender (OR 1.91, 95% CI 1.58−2.31), hypertension (OR  1.3, 95% CI 1.07−1.59) and age 55–79 years (OR 1.15, 95% CI 1.06−1.26) are risk factors for ICU admission. Patients aged 80+ years, as well as patients with dementia or with liver disease were admitted less often to ICU. CONCLUSION: We conclude that increasing age is the most important risk factor for in-hospital mortality of hospitalised COVID-19 patients in Switzerland, along with male gender and followed by the presence of comorbidities such as renal diseases, chronic respiratory or cardiovascular disease, oncological malignancies and dementia. Male gender, hypertension and age between 55 and 79 years are, however, risk factors for ICU admission. Mortality and ICU admission need to be considered as separate outcomes when investigating risk factors for pandemic control measures and for hospital resources planning.


Subject(s)
COVID-19 , Hospital Mortality , Hospitalization/statistics & numerical data , Pandemics , Adult , Aged , COVID-19/diagnosis , COVID-19/mortality , Comorbidity , Humans , Intensive Care Units , Male , Middle Aged , Prospective Studies , Retrospective Studies , Risk Factors , SARS-CoV-2 , Switzerland/epidemiology
9.
Antimicrob Resist Infect Control ; 10(1): 51, 2021 03 09.
Article in English | MEDLINE | ID: covidwho-1133610

ABSTRACT

The rapid spread of the coronavirus disease 2019 pandemic urged immense testing capacities as one cornerstone of infection control. Many institutions opened outpatient SARS-CoV-2 test centers to allow large number of tests in comparatively short time frames. With increasing positive test rates, concerns for a possible airborne or droplet contamination of specimens leading to false-positive results were raised. In our experimental series performed in a dedicated SARS-CoV-2 test center, 40 open collection tubes placed for defined time periods in proximity to individuals were found to be SARS-CoV-2 negative. These findings argue against false-positive SARS-CoV-2 results due to droplet or airborne contamination.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Equipment Contamination/statistics & numerical data , Specimen Handling/methods , False Positive Reactions , Humans , Particulate Matter/analysis , Polymerase Chain Reaction , SARS-CoV-2/isolation & purification
10.
PLoS Comput Biol ; 17(1): e1008609, 2021 01.
Article in English | MEDLINE | ID: covidwho-1110076

ABSTRACT

A key parameter in epidemiological modeling which characterizes the spread of an infectious disease is the generation time, or more generally the distribution of infectiousness as a function of time since infection. There is increasing evidence supporting a prolonged viral shedding window for COVID-19, but the transmissibility in this phase is unclear. Based on this, we develop a generalized Susceptible-Exposed-Infected-Resistant (SEIR) model including an additional compartment of chronically infected individuals who can stay infectious for a longer duration than the reported generation time, but with infectivity reduced to varying degrees. Using the incidence and fatality data from different countries, we first show that such an assumption also yields a plausible model in explaining the data observed prior to the easing of the lockdown measures (relaxation). We then test the predictive power of this model for different durations and levels of prolonged infectiousness using the incidence data after the introduction of relaxation in Switzerland, and compare it with a model without the chronically infected population to represent the models conventionally used. We show that in case of a gradual easing on the lockdown measures, the predictions of the model including the chronically infected population vary considerably from those obtained under a model in which prolonged infectiousness is not taken into account. Although the existence of a chronically infected population still remains largely hypothetical, we believe that our results provide tentative evidence to consider a chronically infected population as an alternative modeling approach to better interpret the transmission dynamics of COVID-19.


Subject(s)
COVID-19 , Communicable Disease Control , Models, Statistical , Virus Shedding/physiology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19/virology , Communicable Disease Control/methods , Communicable Disease Control/statistics & numerical data , Computational Biology , Humans , SARS-CoV-2 , Switzerland
11.
Antimicrob Resist Infect Control ; 10(1): 11, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1028830

ABSTRACT

BACKGROUND: In intensive care units (ICUs) treating patients with Coronavirus disease 2019 (COVID-19) invasive ventilation poses a high risk for aerosol and droplet formation. Surface contamination of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) or bacteria can result in nosocomial transmission. METHODS: Two tertiary care COVID-19 intensive care units treating 53 patients for 870 patient days were sampled after terminal cleaning and preparation for regular use to treat non-COVID-19 patients. RESULTS: A total of 176 swabs were sampled of defined locations covering both ICUs. No SARS-CoV-2 ribonucleic acid (RNA) was detected. Gram-negative bacterial contamination was mainly linked to sinks and siphons. Skin flora was isolated from most swabbed areas and Enterococcus faecium was detected on two keyboards. CONCLUSIONS: After basic cleaning with standard disinfection measures no remaining SARS-CoV-2 RNA was detected. Bacterial contamination was low and mainly localised in sinks and siphons.


Subject(s)
Bacteria/isolation & purification , COVID-19/therapy , Disinfection/methods , Equipment Contamination/statistics & numerical data , Intensive Care Units/statistics & numerical data , Aerosols/analysis , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , COVID-19/virology , Cross Infection/microbiology , Cross Infection/prevention & control , Cross Infection/virology , Female , Humans , Male , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Tertiary Healthcare/statistics & numerical data
12.
Emerg Infect Dis ; 27(2): 404-410, 2021 02.
Article in English | MEDLINE | ID: covidwho-1006425

ABSTRACT

Switzerland began a national lockdown on March 16, 2020, in response to the rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We assessed the prevalence of SARS-CoV-2 infection among patients admitted to 4 hospitals in the canton of Zurich, Switzerland, in April 2020. These 4 acute care hospitals screened 2,807 patients, including 2,278 (81.2%) who did not have symptoms of coronavirus disease (COVID-19). Overall, 529 (18.8%) persons had >1 symptom of COVID-19, of whom 60 (11.3%) tested positive for SARS-CoV-2. Eight asymptomatic persons (0.4%) also tested positive for SARS-CoV-2. Our findings indicate that screening on the basis of COVID-19 symptoms, regardless of clinical suspicion, can identify most SARS-CoV-2-positive persons in a low-prevalence setting.


Subject(s)
COVID-19 Testing/statistics & numerical data , COVID-19/diagnosis , Diagnostic Tests, Routine/statistics & numerical data , Patient Admission/statistics & numerical data , Universal Precautions/statistics & numerical data , Adult , Aged , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing/methods , Diagnostic Tests, Routine/methods , Female , Humans , Incidence , Male , Middle Aged , Prevalence , SARS-CoV-2 , Switzerland/epidemiology , Universal Precautions/methods
13.
Antimicrob Resist Infect Control ; 9(1): 191, 2020 12 02.
Article in English | MEDLINE | ID: covidwho-953026

ABSTRACT

BACKGROUND: Super-spreaders are individuals infecting disproportionately large numbers of contacts. They probably play a crucial role in the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We describe a super-spreading event within a team working in an open-space office and investigate factors potentially having facilitated SARS-CoV-2 transmission. METHODS: In this retrospective cohort study, semi-structured telephone interviews with all team members were carried out to identify symptoms, contacts, and adherence to basic hygiene measures. During site visits, we gathered information about workplace and seating arrangements. The secondary attack rate in office and households was calculated. Potential respiratory viral co-infections were assessed by multiplex PCR. SARS-CoV-2 whole-genome sequencing was performed using a tiled-amplicon sequencing approach. RESULTS: Of 13 team members, 11 fell ill with Coronavirus disease 2019 (COVID-19). Due to the sequence of events and full genome sequence data, one person was considered the index case for this outbreak, directly infecting 67 to 83% of the teammates. All team members reported repetitive close contacts among themselves during joint computer work, team meetings and a "Happy Birthday" serenade. Two individuals shared nuts and dates. The arrangement of the office and meeting rooms precluded sufficient adherence to physical distancing. The index case and a further individual were diagnosed with an adenovirus serotype 4 co-infection. CONCLUSION: We identified several environmental and behavioral factors that probably have facilitated the transmission of SARS-CoV-2. The relevance of the adenovirus co-infection remains unclear and merits further investigation.


Subject(s)
COVID-19/complications , COVID-19/transmission , Coinfection , SARS-CoV-2 , COVID-19/virology , Cohort Studies , Humans , Respiratory Tract Infections/complications , Retrospective Studies , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL